A novel control method for a VSC-HVDC system in a grid-connected wind farm
نویسندگان
چکیده
The voltage source converter-high voltage direct current (VSC-HVDC) transmission is the ideal integration technology for grid-connected wind farms. A passivity-based control (PBC) method for VSC-HVDC when the wind farm voltage is unbalanced is proposed in this paper. The mathematical model of a VSC with unbalanced voltage is established. The PBC theory including dissipation inequality and system strict passivity is introduced, and then the stability of PBC is proven in light of the Lyapunov stability theory. According to PBC theory, a Euler–Lagrange mathematical model of a VSC is constructed. After that, the strict passivity of the VSC is proven. On the premise of the power factor being 1, the PBC controller for the VSC-HVDC system is designed under d-q coordination. The control law is deduced in detail. In order to accelerate the convergence speed, dampers are added to the PBC controller. The decoupled control of the active power and the reactive power is achieved by this method. The dynamic and steady performances of the VSC-HVDC system in a grid-connected wind farm when the wind farm voltage is unbalanced are significantly improved. Furthermore, the robustness of the system is enhanced. The simulation results verify the feasibility and correctness of the method.
منابع مشابه
Coordinated Control Strategies of VSC-HVDC-Based Wind Power Systems for Low Voltage Ride Through
The Voltage Source Converter-HVDC (VSC-HVDC) system applied to wind power generation can solve large scale wind farm grid-connection and long distance transmission problems. However, the low voltage ride through (LVRT) of the VSC-HVDC connected wind farm is a key technology issue that must be solved, and it is currently lacking an economic and effective solution. In this paper, a LVRT coordinat...
متن کاملA New Control Method for Smoothing PMSG-based Offshore Wind Farm Output Power
Nowadays, propagation of wind turbines make challenges to supply safe power to the grid. Because of wind speed changes, supervisors are concerned to wind turbines, be able to produce appropriate electric power during the wind speed changes. As a matter of fact, investors are mostly like to invest on offshore wind farms, because of their more stable and continuous wind speed rather than onshore ...
متن کاملImpact of DFIG Based Offshore Wind Farms Connected Through VSC-HVDC Link on Power System Stability
With the increased levels of offshore wind power penetration into power systems, the impact of offshore wind power on stability of power systems require more investigation. In this paper, the effects of a large scale doubly fed induction generator (DFIG) based offshore wind farm (OWF) on power system stability are examined. The OWF is connected to the main onshore grid through a voltage source ...
متن کاملDefinition of a Control Scheme for a Coordinated Management of Large Offshore Wind Farms Connected via Hvdc Links
This paper proposes the development of an appropriate control system for the real-time management of large offshore Doubly-Fed Induction Generator (DFIG) based wind farms, connected to the transmission network by Voltage Source Converter High Voltage Direct Current (VSC-HVDC) link. In this plant layout, variable frequency operation lets wind turbines to work on a wider range of wind speed value...
متن کاملInvestigation on Fault-ride Through Methods for VSC-HVDC Connected Offshore Wind Farms
Recently, there has been a fast development and deployment of wind energy to meet the increasing electrical power demand and to limit the use of fossil fuels. More and more wind farms are planned far from shore because of good wind condition and less visual impact. This is so called offshore wind farm (OWF). In such a situation, high voltage direct current (HVDC) transmission is a favorable opt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015